

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 1st Semester Examination, 2021-22

STSACOR02T-STATISTICS (CC2)

MATHEMATICAL ANALYSIS AND ALGEBRA-I

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Answer any *four* questions

 $5 \times 4 = 20$

5

- 1. Define subsequence of a real sequence. Show that if a monotone sequence has a 1+4 convergent subsequence then the sequence is convergent.
- 2. Distinguish between maximum and sepremum of a set $A(\subset \mathbb{R})$. Find the 2+3 Supremum and Infimum of the set $A = \lim_{n \to \infty} A_n$ with $A_n = \left(2 - \frac{1}{n}, 5 + \frac{1}{n^2}\right], n \ge 1$.
- 3. Check whether the following series are convergent:
 - (i) $\sum_{n\geq 1} \frac{n!}{r^n}$ with r>0
 - (ii) $\sum_{n \ge 1} \frac{1}{2^n} \left(1 + \frac{1}{n} \right)^n$
 - (iii) $\sum_{n\geq 1}\sin\left(\frac{\pi}{n^2}\right)$.
- 4. Let *S* be a subspace of the Euclidean vector space \mathbb{E}^4 and let *S* be spanned by the vector $(0, -1/\sqrt{5}, 0, 2/\sqrt{5})$. Extend the basis of *S* to obtain an orthonormal basis of \mathbb{E}^4 .
- 5. Distinguish between spanning set and set of basis vectors with an example. 2+3 Consider the vectors $x_1 = (1, 3, 2)$ and $x_2 = (-2, 4, 3)$ in \mathbb{E}^3 . Show that the set spanned by x_1 and x_2 is given by

$$\{(\xi_1, \xi_2, \xi_3): \xi_1 - 7\xi_2 + 10\xi_3 = 0\}.$$

CBCS/B.Sc./Hons./1st Sem./STSACOR02T/2021-22

6. What is a non-singular matrix? Define adjoint of a matrix. For a square matrix A 1+1+3 of order n, show that $|\operatorname{Adj}(A)| = |A|^{n-1}$.

GROUP-B

Answer any *three* questions
$$10 \times 3 = 30$$

- 7. (a) Define Cauchy sequence of real numbers. State its relation with convergent 2+1+2 sequence. Show that the sequence $a_n = \frac{\sin(n)}{\sqrt{n}}$, $n \ge 1$ is a Cauchy sequence.
 - (b) Let $\{a_n\}$ be a sequence of positive real numbers such that for 5 $n \ge 1, a_{n+1} \le a_n + \frac{1}{(n+1)^2}$. Show that the sequence is convergent.
- 8. (a) Define limit superior (\overline{a}) and limit inferior (\underline{a}) of a sequence $\{a_n\}$ of real 2+4 numbers. Find \overline{a} and \underline{a} for the sequence $a_n = \{(-1)^n + 1\}n^2, n \ge 1$.
 - (b) For two real series $\sum_{n\geq 1} a_n$ and $\sum_{n\geq 1} b_n$ if $\sum_{n\geq 1} a_n^2 < \infty$ and $\sum_{n\geq 1} b_n^2 < \infty$ then show that $\sum_{n\geq 1} a_n b_n$ converge absolutely.
- 9. (a) When is a set of vectors called linearly independent? Show that a set containing 2+2 null vector cannot be linearly independent.
 - (b) Show that any vector in a vector space has a unique representation in terms of its 2+4 basis. If V_1 and V_2 are two subspaces of a vector space, say V, then show that $V_1 \cap V_2$ is also a subspace of V, but $V_1 \cup V_2$ may not be the same.
- 10. (a) Show that the number of independent row vectors of a matrix is equal to the 3 number of independent column vectors.
 - (b) Let X be any $m \times m$ matrix partitioned as $X = (X_1^{m \times r}; X_2^{m \times (m-r)})$ such that $X_2 = X_1C$, where C is a $r \times (m r)$ matrix. If the rows of X are linearly independent, show that the rows of X_1 are also linearly independent.
 - (c) If X be a $m \times n$ matrix having m linearly independent row vectors and Y = XA, 3 where

	(a_{11})	a_{12}	•••	$a_{1\overline{n-1}}$	a_{1n}	
	0	a_{22}	•••	$a_{2\overline{n-1}}$	a_{2n}	
A =	:	÷		:	:	
	0	0		0	a_{nn}	

with $a_{ii} \neq 0 \forall i = 1, 2, ..., n$. Prove that the rows of Y are linearly independent.

CBCS/B.Sc./Hons./1st Sem./STSACOR02T/2021-22

- 11. (a) State some basic properties of a polynomial $P_n(x)$ of degree *n*.
 - (b) What do you mean by equivalent polynomials? Describe its utility in finding 1+2 roots.
 - (c) Write how you represent a polynomial of the form

$$P_n(x) = x^n + c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \dots + c_1x + c_0$$

in terms of its roots.

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

__×___

4

3